If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2=900
We move all terms to the left:
a^2-(900)=0
a = 1; b = 0; c = -900;
Δ = b2-4ac
Δ = 02-4·1·(-900)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*1}=\frac{-60}{2} =-30 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*1}=\frac{60}{2} =30 $
| -3x+33=212 | | x=1.35 | | B(6)=10x+25 | | -10+4-2x=8+4x-16 | | x^2-26x+118=0 | | t/9-6=-32 | | (x-12)*(-3)=-54 | | 63-5u=4u | | 2x+5/x=2x/x-2 | | k+39/7=9 | | 0.7=x/5-18 | | t/3+30=36 | | x^2-9999999999x-10000000000=0 | | 2x+27=x+53 | | 110+40+9x-2=180 | | e+9=22 | | 0.5(4x+2)=2x+4 | | (z2+80)+94=180 | | 2/3x-20=36 | | 4p+2=6p-10 | | (1/8)^x-1=(1/4)^x/3 | | 4r=404 | | (=-5x+6.2)+(11x-4.9) | | 195=q-7 | | (-5x+6.2)=+(11x-4.9) | | s/14=29 | | b-16=14 | | x+90=153 | | -7x+1=-5512.) | | 10t-28+5t+2=180 | | 6^x-2=4x+7 | | (3x+8)+(9x-17)+(3x+2)=180 |